$\newcommand{\set}[1]{\{#1\}}$ $\newcommand{\inset}[2]{\{#1 \mid #2\}}$ $\newcommand{\name}[1]{\emph{#1}}$ $\newcommand{\size}[2][]{\left| #2^{#1} \right|}$ $\newcommand{\sig}[1]{\mathcal{#1}}$

Chordal Graph: Minimal vertex separators

chocobaby-aporo.hatenablog.com

Chordal Graph回の第一回目です.今回はMinimal vertex separatorsを紹介します.

Minimal vertex separators

まず,$G = (V, E)$中の頂点集合$S \subseteq V$が,vertex separator (separator)とは 次のような2頂点$u, v$が存在することを言います.

  • $u, v$は$G$中の連結成分に含まれるが,$G \setminus S$では同じ連結成分に含まれない.

この時,$S$は$u, v$をseparateすると言います. 簡単にいうと下の図のような頂点集合です.一応この例のグラフはchordalになっているはずです. f:id:chocobaby-aporo:20171103141010j:plain 特に,Minimal separatorというとSeparatorの中でもどんな頂点を除いてもseparator出なくなるようなseparatorです.

f:id:chocobaby-aporo:20171103150458j:plainf:id:chocobaby-aporo:20171103141024j:plain

ここでChordal Graphの面白い性質1つ目ですが,次のような定理が知られています.

グラフ$G$がchordalである. $\iff$ $G$中の全てのminmal separatorがcliqueである.

$G$がchordalであるという条件を$A$,$G$中の全てのminmal separatorがcliqueであるという条件を$B$とします. まず$\lnot A \to \lnot B$,つまり$B \to A$について証明します. $G$がchordalではないので誘導部分サイクル(誘導部分グラフかつサイクル,要は弦を含まないサイクル)$C = (u_1, \dots, u_k)$が存在します.$(k \ge 4)$. この$C$中の隣接しない2頂点$u, v$をseparateするMinimal separatorを$S$とすると,この$S$は$C$中の隣接しない2頂点を含むのでcliqueではありません. したがって$B \to A$が成り立ちます.

次に$A \to B$を証明します. $S$を任意のminimal separatorとして,$G \setminus S$の連結成分の集合を$\sig C$とします. ここで重要なこととして,minimal separator $S$中の任意の頂点$u$は必ず$\sig C$中のすべての連結成分と隣接しています. もし全ての隣接成分と隣接していない頂点があると,minimal性が成り立たないからです.図で見るとこんな感じの状態になっています.

f:id:chocobaby-aporo:20171103144834j:plainf:id:chocobaby-aporo:20171103144838j:plain

ここで,この性質から$S$中の任意の2頂点$u, v$は$G$中のあるサイクルに含まれることがわかります. しかも,そのサイクルの中には$S \setminus \set{u, v}$中の頂点を含まないサイクルも存在します. (要は$S$中の要素の$u$と$v$だけを含むサイクル)図中の赤線がそのサイクルを表しています. このサイクルは必ず長さが4以上なので,このサイクル中には必ず弦があります. この弦が$u, v$を結ぶ弦なら$u, v$は隣接するし,もし$u, v$を結ばないならその弦を含む$C$より短いサイクルができるため, 最終的には$u, v$を含む長さ4のサイクル$C'$ができます.ここで,$G$がchordalなので, $C'$も弦を含むのですが,$u$と$v$以外のサイクル中の頂点,つまり異なる連結成分同士の頂点を結ぶと,$S$がseparatorであることに矛盾するので, $u$と$v$を結ぶしかありません.つまり$S$中の任意の2頂点$u, v$は隣接しています.言い換えると$S$が誘導する$G $の誘導部分グラフ$G[S]$はcliqueになります.

まとめ

というわけで,Chordal Graphの面白い性質その1は

  • グラフ$G$がchordalである. $\iff$ $G$中の全てのminmal separatorがcliqueである.

という性質でした.正直Choralの定義だけみて,「それなら全てのminimal separatorはcliqueになるのか〜」と気付く人はほとんどいないと思いますが, こんな面白い性質があることが知られています. まだまだ面白い性質があるので,気合が続く限り紹介していきます.

追記

今はまだ事実だけを書いておきますが,実はMinimal separatorの数はchordal graphの頂点数よりも少なくなることが知られています. それについての論文が出ていて,これですね. chordal graph以外でもminimal separatorの数については研究されています. あまり僕が理解していないので申し訳ないですが,一般のグラフでのMinimal separatorの数は O(1.6181n) なので, chordal graphではminimal separatorの数がすごく少なくなるのが知られています. 一般のグラフでのMinimal separatorの数の上限についてはここを参照してください.